Bulk Thermal Expansion Studies of BiCaSrCu₂O_x and $\text{Bi}_2 \text{CaSr}_2 \text{Cu}_2 \text{O}_x$

A. C. Momin, 1 E. B. Mirza, 1 and M. D. Mathews¹

Received August 8, 1990

The compounds $BiCaSrCu₂O_x$ and $Bi₂CaSr₂Cu₂O_x$ were prepared by ceramic techniques and characterized by X-ray powder diffractometry (XRD) and microthermogravimetry (μ TG) and their bulk thermal expansion measurements were carried out using dilatometry in the temperature range $298 \le T \le 1073$ K in air. The results have been analyzed and are compared with those obtained earlier for YBa₂Cu₃O₇. The XRD analysis shows that both BiCaSrCu₂O_x and $Bi_2CaSr_2Cu_2O_2$ are single phase in nature, having an orthorhombic symmetry. The μ TG analysis carried out in oxygen, air, and nitrogen shows negligible weight loss ($\sim 0.1\%$) on heating to 1073 K, indicating that these two compounds, unlike $YBa₂Cu₃O₇$, are quite stable. The analysis of bulk thermal expansion data reveals that the average linear thermal expansion coefficient (α_1) for both BiCaSrCu₂O_x and Bi₂CaSr₂Cu₂O_x is almost the same ($\alpha_1 \approx$ 10.5×10^{-6} K⁻¹) and is found to be nearly half of that for $YBa₂Cu₃O₇$ ($\alpha_1 \approx$ 18×10^{-6} K⁻¹), suggesting that the interatomic bonding in both BiCaSrCu₂O_x and $Bi_2CaSr_2Cu_2O_x$ is stronger as compared to $YBa_2Cu_3O_7$.

KEY WORDS: BiCaSrCu₂O_x; Bi₂CaSr₂Cu₂O_x; ceramics; dilatometry; thermal expansion.

1. INTRODUCTION

In our previous papers [1, 2], we have reported lattice thermal expansion and bulk thermal expansion studies of the well-established compound $YBa_2 Cu_3 O_7$ using high-temperature X-ray powder diffractometry (XRD) and dilatometry, respectively. In continuation of these investigations, we report here the bulk thermal expansion studies of the newly discovered [3] compounds $BiCaSrCu₂O_x$ and $Bi₂CaSr₂Cu₂O_x$ in the temperature range $298 \le T \le 1073$ K in air.

¹ Applied Chemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay 400085, India.

2. EXPERIMENTAL

2.1. Preparation and Characterization

The single-phase compound $BicaSrCu₂O_x$ could not be prepared by the usual ceramic technique. For this reason, we resorted to a two-step matrix reaction method. The matrix $CaSrCu₂O_x$ was first made by mixing thoroughly appropriate amounts of $CaCO₃$, SrCO₃, and CuO. The mixture was pressed into a pellet and heated at 1033 K in air for 48 h with intermittent grinding. The heated product was ground to a fine powder and mixed with a proper amount of Bi_2O_3 . The mixture was uniformly ground, pressed into a pellet, and heated at 1033 K in air for 48 h with intermittent grinding till the reaction was complete. The reacted product was uniformly powdered, pressed into a pellet, and further heated at 1073 K in air for 48 h. The pellet was quickly withdrawn from the furnace for fast cooling to room temperature.

The single-phase compound $Bi_2CaSr_2Cu_2O_x$, unlike BiCaCrCu₂O_x, could be prepared by the usual ceramic technique in a single-step reaction. Appropriate amounts of Bi_2O_3 , $CaCO_3$, $SrCO_3$, and CuO were mixed together, uniformly ground, pressed into a pellet, and heated at 1033 K for 96 h in air, with intermittent grinding. The resulting product was crushed to a fine powder, pelletized, and further heated at 1073 K for 48 h in air. The pellet was quickly withdrawn from the furnace for fast cooling to room temperature.

The compounds prepared as above were characterized by XRD using CuK_{α} radiation. The cell parameters were evaluated from d-spacing measurement of all observed reflections in the 2 θ range of 20–55° (CuK_n). Accurate values of cell parameters were obtained using a computer program for least-squares refinement. A microthermogravimetric (μTG) analysis of the above compounds was carried out in oxygen, air, and nitrogen from ambient to 1073 K using a Shimadzu TG instrument, Model TGC-31, at $50-\mu g$ sensitivity with a heating and cooling rate of $5 \text{ K} \cdot \text{min}^{-1}$.

2.2. Dilatometric Studies

Bulk thermal expansion measurements were carried out in the temperature range 298 to 1073 K in air at a heating rate of $5 \text{ K} \cdot \text{min}^{-1}$ using a Model LKB 3185 fused quartz pushrod-type dilatometer. Samples in the form of pressed sintered cylindrical pellets with $\sim 65\%$ theoretical bulk density were used.

3. RESULTS AND DISCUSSION

The room-temperature XRD patterns of $BiCaSrCu₂O_x$ and $Bi_2CaSr_2Cu_2O_x$ in the 2 θ range of 20-55° (CuK_α) are shown in Fig. 1 along with that of YBa₂Cu₃O₇. The XRD patterns of both BiCaSrCu₂O_x and $Bi_2CaSr_2Cu_2O_x$ are almost identical and reveal a single-phase nature. All observed reflections in the XRD patterns of these two compounds could be indexed on the basis of orthorhombic unit cells, the cell parameters of

Fig. 1. Comparison of room-temperature X-ray powder diffractograms of BiCaSrCu₂O_x and Bi₂CaSr₂Cu₂O_x (present study) and YBa₂Cu₃O₇ [1] in the 2 θ range 20–55°, (CuK_x).

Compound	Cell parameter (\AA)		
	a	h	C
BiCaSrCu ₂ O _r	5.40	5.46	30.29
$Bi_2CaSr_2Cu_2O_x$	5.37	5.48	30.73
$YBa2Cu3O7$	3.84	3.89	11.66

Table I. The Cell Parameter Data **for the Orthorhombic** Unit Cells **of** $BiCaSrCu₂O_x$ and $Bi₂ CaSr₂ Cu₂O_x$ (Present Work) and YBa₂ Cu₃O₂ [1]

which are given in Table I together with those obtained earlier for $YBa_2Cu_3O_7$ [1].

The μ TG curves obtained for BiCaSrCu₂O_x and Bi₂CaSr₂Cu₂O_x **during heating and cooling between room temperature and 1073 K in** oxygen are shown in Fig. 2. The μ TG curve obtained for YBa₂Cu₃O₇ **under identical conditions is also shown in this figure for comparison. As can be seen from Fig. 2, the weight loss observed on heating to 1073 K for**

Fig. 2. μ TG data for BiCaSrCu₂O_x, Bi₂CaSr₂Cu₂O_x, and $YBa₂Cu₃O₇$ in flowing oxygen in the temperature range 298-1073 K (sample weight, 200 mg) at the heating/cooling rate of $5 \text{ K} \cdot \text{min}^{-1}$. The **figures in parentheses show the percentage weight loss** at 1073 K.

both BiCaSrCu₂ O_x and Bi₂CaSr₂Cu₂ O_x is negligibly small, ~0.05–0.1%. **The initial weight loss observed below 573 K is attributed to moisture loss.** However, in the case of $YBa_2Cu_2O_7$, the weight loss observed on heating to 1073 K is much higher (0.83%) . The μ TG curves obtained in air and **nitrogen for these compounds also showed similar trends during heating.**

The dilatometric data are shown in Fig. 3, wherein the percentage linear thermal expansion is plotted as a function of temperature from ambient to 1073 K in air for $BiCaSrCu₂O_x$ and $Bi₂CaSr₂Cu₂O_x$. The dilatometric results obtained earlier $[2]$ for $YBa₂Cu₃O₇$ under identical **conditions are also shown in Fig. 3 for comparison.**

The temperature variation of percentage linear thermal expansion $100(\Delta L/L)$ can be expressed by the following equations obtained by the least-squares method valid in the range 298-1073 K in air.

For BiCaSrCu₂O_x

$$
100(AL/L) = 4.84 \times 10^{-4} (T - 298) + 2.88 \times 10^{-6} (T - 298)^2
$$

- 2.71 × 10⁻⁹ (T - 298)³ (1)

Fig. 3. Variation of percentage linear thermal expansion as a function of temperature in the range 298-1073 K in air for $BiCaSrCu₂O_x$ and $Bi_2CaSr_2Cu_2O_x$ (present work) and $YBa_2Cu_3O_7$ [2].

For $Bi_2CaSr_2Cu_2O_x$

$$
100(AL/L) = 2.83 \times 10^{-4} (T - 298) + 3.35 \times 10^{-6} (T - 298)^2
$$

- 2.99 × 10⁻⁹ (T - 298)³ (2)

For $YBa_2Cu_3O_7$

$$
100(AL/L) = 4.40 \times 10^{-4} (T - 298) + 4.03 \times 10^{-6} (T - 298)^{2}
$$

- 2.91 × 10⁻⁹ (T - 298)³ (3)

The temperature dependence of the coefficient of average linear thermal expansion, $\alpha_1 = (1/L)(\Delta L/\Delta T)$, derived from Eqs. (1), (2), and (3) is represented by the following expressions.

For BiCaSrCu₂O_x

$$
\alpha_1 = 4.84 \times 10^{-6} + 2.88 \times 10^{-8} (T - 298) - 2.71 \times 10^{-11} (T - 298)^2 \tag{4}
$$

For Bi₂CaSr₂Cu₂O_x
\n
$$
\alpha_1 = 2.83 \times 10^{-6} + 3.35 \times 10^{-8} (T - 298) - 2.99 \times 10^{-11} (T - 298)^2
$$
 (5)
\nFor YBa₂Cu₃O₇

$$
\alpha_1 = 4.40 \times 10^{-6} + 4.03 \times 10^{-8} (T - 298) - 2.91 \times 10^{-11} (T - 298)^2
$$
 (6)

The α_1 values calculated from the above equations are found to be 10.59×10^{-6} and 10.47×10^{-6} K ⁻¹ for BiCaSrCu₂O_x and Bi₂CaSr₂Cu₂O_x, respectively, in the temperature range 298-1073 K, while for $YBa₂Cu₃O₇$ the value obtained is 18×10^{-6} K⁻¹. The α_1 values of both BiCaSrCu₂O_x and $Bi_2CaSr_2Cu_2O_x$ are thus found to be almost the same, but these values are nearly half of that of YBa₂Cu₃O₇. The low α_1 values of $BiCaSrCu₂O_x$ and $Bi₂CaSr₂Cu₂O_x$ indicate that the interatomic bonding in these two compounds is stronger as compared to $YBa_2Cu_3O_7$. This is also evident from the μ TG data (Fig. 2), wherein it is observed that the oxygen loss on heating is negligibly small for both $BiCaSrCu₂O_x$ and $Bi₂CaSr₂Cu₂O_x$ as compared to that for $YBa₂Cu₃O₇$. The evolution of oxygen on heating $YBa_2Cu_3O_7$ increases the void space along the grain boundaries, which in turn contributes to the increase in bulk volume, resulting in the high value of α_1 for YBa₂Cu₃O₇. In case of BiCaSrCu₂O_x and $Bi_2CaSr_2Cu_2O_x$, the evolution of oxygen on heating is negligibly small and hence its contribution to the expansion coefficient is absent in these two compounds.

The lattice thermal expansion data obtained earlier [1] for YBa₂Cu₃O₇ revealed that α_1 along the crystallographic axes a and b of

Thermal Expansion of Compounds 591

an orthorhombic unit cell of YBa₂Cu₃O₇ is almost the same ($\alpha_1 \approx$ 7.5×10^{-6} K⁻¹), while that along axis c is nearly twice $(\alpha_1 \approx$ 15×10^{-6} K⁻¹) that of a or b. It remains to be seen how the expansion coefficients along the crystallographic axes a, b , and c of the orthorhombic unit cells of BiCaSrCu₂O_x and Bi₂CaSr₂Cu₂O_x behave. It would be particularly interesting to know the behavior along the c axis. This aspect is therefore being studied using high-temperature X-ray powder diffractometry.

REFERENCES

- 1. A. C. Momin, M. D. Mathews, V. S. Jakkal, I. K. Gopalakrishnan, J.V. Yakhmi, and R. M. Iyer, *Solid State Commun.* 64:329 (1987).
- 2. A. C. Momin, M. D. Mathews, E. B. Mirza, and I. K. Gopalakrishnan, in *High Temperature Superconductivity: The First Two Years,* R.M. Metzger, ed. (Gordon and Breach, New York, 1988), pp. 147-150.
- 3. C. W. Chu, P. H. Horr, R. L. Meng, Z. J. Huang, L. Gao, Y. Y. Xue, Y.Y. Sun, Y. Q. Wang, and J. Bechtold, *Physica C* 153-155:1138 (1988).